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Resonance oscillations of a mechanical system are investigated, and peculiarities in its 
behavior are explained. The oscillations of conservative systems with two degrees of 

Fig. 1 

freedom under internal resonance are examined in p- 51. 

A certain addition to the existing asymptotic methods in 

the theory of nonlinear oscillations is proposed in the last 
paper by Struble ; the results of this paper are utilized 

below. 

1. Let us consider a system of two successively connected 

physical pendulums (Fig. 1). The first rotates around a hori- 
zontal axis o, and the second around an axis o1 belonging 
to the first pendulum and perpendicular to 0. In the equi- 

librium position o1 is horizontal. Let C, and C, denote the 
centers of gravity of the two physical pendulums ; M, and 

M, their masses; 0, the intersection of the line OC, with 

the o,-axis ; Z1 the moment of inertia of the first pendulum 
relative to an axis passing through C, and parallel to o; Z,, 
the moment of inertia of the second pendulum relative to 

the axis passing through C, and parallel to o1 ; Z,, passing through C, and 0, ; Z,, pas- 
sing through C, and perpendicular to the other two axes. We shall consider Ztl, I,, and 
Z,, to be the principal central moments of inertia of the second pendulum ; let e1 be the 

deflection of the first pendulum from the oz-axis, and 6, the deflection of the second 
pendulum from the OC,-axis ; let us set 

oc, = al, o,c, = a,, 00, = b, 

In this notation we have: 
for the system kinetic energy 
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T = ‘12 [II + Jfla,’ -I 12,cos282 $ I22 sin* 82 + M, (b, $ a2 ~0s fj,)z] 0: i- 

+ ‘I* (Z,, + M,Qyy (1.1) 

for the system potential energy 

n=- g(MIa, f M,b) COS 8, - gn'& COS 8, COS 8, (1.2) 

Taking account of (1.1) and (1.2). we find the differential equation of motion 

[Zr + M,u,~ + Zzr cos*e2 + zsa sina 8, + M, (b, + U, cos e,)aI 8;. - 

- [(I,, - Z2s + M2$a) sin 28, + 2M,b,a, sin 8,]8r’8, + 
+ g [M,q + M, (6, + a2 cos O,)] sin 8, = 0 

(I,, + M,a,*) e; + [M&b, sin 8, + V2 (I,, - I,, + M,a,*) sin 28,i et.2 + 
+gM2a2 cos 8, sin 8, = 0 (1.3) 

Let us set 
8, = ez,, 8, = ez2, e - small parameter (1.4) 

After some manipulation, we obtain from (1.3) 

[ZI -t Mrera -I- Zzr -t Mz (br + +#I zr” + g [Mrar + Mz (br + a*)] z1 = ezF, 
(Zz, + M,a,*) z," + g M,a,z, = GF, 

F, = 112, - 122 + M,a, (b, + 41 b “z 1 22 -I- 2z,'z,z,') + vsg w1a1 -t 

+ M2 (bl + a2)l ~1' + '/2g Mza,z,zz* + e* (...) + . . . 
F2 = - 1121 - 123 + M,a, (bl + 41 ~I’*22 + ‘lagM2a2 (3~1~22 + z22) + e2 (. ..) -I- . . . 

(1.5) 
Let us introduce dimensionless time 

gM2a2 

' =' 122 + M2a29 
We then find from (1.5) 

(1 .S) 

zt’ -I- Pszr = e* [ab (z~“z? + 221’~~~~‘) + */,&Pz~~ + lj2a21z22 1 

z2'+ z2 =ea [- bzl’az2 + l//c~~S + lj2~12~2] 

It2 i- Mu9 

(I.71 

a = II+ 12, + M 10,~ + M2 (h + a# ’ 
b = ~ZI- 123 + Msa2 ($9 a2) 

122 + M2azP 
(122 + M2~2")IM1a1+ M2(h+ a2)J 

p2 = [ II+ 121+ Mm’ + M2 (al+ a*)‘] M2a20 

where derivatives with respect to t and terms containing a in powers higher than the 
second are discarded, 

2. Now, let us examine the system (1.7). Let us seek the solution in the form 

z1 = A cos (87 - $I) f eaz12 i- e’z,, -I- . . . 
z,=Bcos (~-9) +eaz22+e'z2a+... (2.1) 

where A, B, cp, $ are slowly varying functions of r. Substituting (2.1) into (1.7) we 

find (A” + 2fJAcp’ - A#“) cos (pr - cp) + 
+(A$ - 2bA’ + 2A’(p’) sin (fh - cp) i- e* (zlam -i- p*z,2)= 

=e* {[1/4 AB*a (l-2 bp*)f l/~ flaAs] cos (fh - cp) + V,rfSaAS cos (3h - 3~) + 
-j- l/,, aAB* (I + 4b/3 - 2bp*) cos [(p - 2) T - cp + 291 + 

+ l/B aABa (I-4bp - 2bp2) cos [(p + 2) r - cp - 2’i’l) (2.2) 

(B” + 289’ - B1p’ 2) cos (T - 9,) i- (Bg” - 28’ + 28’9’) sin (r - 9) + 
+e2 (z,," f z22) = e2{[1/o AaB (1 -2bp*) -!- I/g B’] COS (7 - 9) -f 
+I/,, Bz cos (3T - 39) + */g A*B (1 + 2bfJ*) cos I(28 - i)‘r - 29 + $1 + 

+‘/z AzB (1 + 2 bfJ*) cm [(2j3 + 1) T - 2q - $I} 

Here terms containing e to degrees higher than the second have been discarded. 
From (2.2) we deduce 
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A” f 2pAcp’-A(p’2 = 9 [1/,‘aABa(l-2bpa) + llepaAS], AT” - 2fiA’ + 2A’cp’ = 0 
B’ + 28%’ - B$‘a = .ca [Vq A2B (i-2bp2) + If8 Ba], Bjf - 28’ + 28’0’ = 0 
Z 1%” -I- B”z~% = ‘/e ABaa (i + 4bfi - 2bb2) cos [(p - 2) T - cp + 2$] + (2.3) 

i- 112, paAs cos (3fh - 3~) + l/g ABaa (I-468 - 2bp2) cos I(fJ + 2) ‘c --9, - 2$] 

222 ” + 222 = l/g A28 (1 + 2bfJ2) cos [(2fi - 1) T - 2~ + $I+ ‘/2( BS cos (3~ - 39) + 
+ l/s AaB (1 + 2 b/P) cos [(28 + 1) T - 2cp - $1 (2.4) 

Equations (2.3) are called variational, and (2.4) the perturbation equations [2- 51. 

From (2.3) we easily obtain 

dq / dr = l/rs fJ-‘es [2a (i-2 bS2) B* + f3’A2], dA / dz = 0 

d$ / d7 = VI6 ea [2 (i-2bp2) A2 + B2], dB / dz = 0 (2.5) 

The solution of this system of equations is 

cp = l/rs B-l f2a(l - 2bb2) Boa + B2A02] e2r + ‘p,, 
0 = VI6 [2 (I-2bpa) A,,2 + B,“] e? + $, (2.V 

Here ‘pot qpo, A,,, B, are constants of integration. From (2.4) we find for 0 # i 

z12 = VS2 (fi - I)-’ aAB2 (1 i- 4bp - 2bfP) cos [(p - 2) T - cp + 291 - (2.72 
- ‘/1#2 AS cos (3 fiz - 3~) - 

-‘/31 (B + I)-’ aAB2 (i--4bfi - 2b/12) cos [(p + 2) T - v - 2$] 

222 = 1/92 p-’ (1 - p) -‘A2B(1 + 2bfi2) cos [(28 - 1) T - 2rp + $1 - 

-Vlti B’cos (3~ - 39) - 1/92 p-‘(i + p)-‘AaB(i + 2bp2) cos [(2fi + i)r - 2 ‘p - $1 

Thus, for p # 1 the solution of the system (1.7) to the accuracy of terms containing 

e to powers not higher than the second has the form (2.1). where A, B, q, 9, z12, zz2 are 
defined by (2.6) and (2.7). 

3. Now, let us also examine the resonance solution when fl =: i and p = 1. Utilizing 
the identities 

‘COS [(p - 2) ‘5 -‘p + 2gl = COS[~@ - i) T - 2 cp + 291 cos (BT - cp) + sin MI3 - 1)x 
XT - 2q + 291 sin (Br - 9) 

cos ((28 - I) T - 29 + $1 = cos [2(p - 1) T - 2~ + 291 cos CT - $4 - sin [2 (0 - 1)X 
XT - 2cp + 291 sin (7 - 9) (3.1) 

we find from (2,Z) in place of the (2.3) and (2.4) 

.A” + 2pAcp’ - A@? = e2 {I/* pzA3 + ‘lr aAB2 (1 - 2bj32) + 
f I/* akB2 (1 + 468 - 2bp2) cosi} 

- 2fiA’ + Acp” f 2A’cp’ = ez ‘IS aAB” (1 -k 4b$ - 2bp2) sin h 

B” + 2.Q’ - ,?I$‘2 = e2 (I/B B3 -+ ‘/a A2B (i--2bfP) $ l/8 A2B (1 + 2bfl*) cos h} 
- 28’ + Bg” + 28’9,’ = - e2 ‘I8 A2B (1 f 2bfl”) sin h (3.2) 

k 2 2 (b - i) - 2r$J + 211, (3.3) 

zr2” + B’z12 = l/s aAB* (1 - 4bb - 2bfP) cos [(b _1- 2) T - q - 291 + 
f ‘Izp P”As cos (3f.h - 39) (3.4) 

z2%” f zz2 = ‘/*A28 (t I 2b$“) cos [(2b + 1) T - 2rp - $1 + ‘i,, 1P cos (3s - 39) 

From (3.4) we obtain 
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*Is = - I/,, (fi + 1)-l a.AB” (1 - 468 - 268’) cos [(fl + 2)~ - ‘p - 2$1 - 
- Vlti AS cos (3pr - 3~) (3.5) 

ss = - l/s, P-l@ + I)-‘A*B (I + 2bp’) cos [(2fi-!-1) r - 29 - (01 - VI,, B’cos (3~--39) 

it is easy to confirm that any solution of the system 

dAlIiT= - l/18 es aAB2 (1 + 4 bf5 - 2bp2) sin A (3.6) 

dq / dr = - l/~&Y1 [ fisAs + 2a (1 - 24’) P] + e21/1( p a (1 + 4bp - 2bp’) P cos k 

dB / dr = 1/l~e2~-l A*B (1 + 2bp*) sin k 

dq / hr = VI6 e2 [B* + 2 (t - 268’) Aa] f 1/1a e2bm1 (i + 2bfi*) As cos A 

satisfies the system (3.2) to the accuracy of second order terms in e. 

After eliminating z and integrating. we find from the first and third equations of the 
system (3.6) 

$A2 + BP = x2 
( “= 

i+26p2 
ap(l +4bQ -2bb’) ) 

(3.7) 

where x2 is a constant of integration. 

From (3.3). (3.9) and (3.7) we obtain an autonomous system in the two variables A 

and k dA 
-=-+A(-$-- *‘)sink, UC I $” e% 
du (3.8) 

dk 
-=m+a’ 

16 (P - 1) 
du [ 

$ - (I + b’) AZ1 - ($ - A.) cos k, 

ao= IP+2a(2bP-ii)Iaz 
m = e2 (1 + tip?) 

P (44’ + P - 2) 
1+2bLbp’” ’ 

b” = 
[~+Za(Zbp~--_)]a’ 

From (3.8) we find 

{m+a’[$- (I + b”) A’] - (f - 2 A’ cos 5 dA + ) ) 

This equation has the integral (3.10) 

a!2mA2 + ‘/2 a0 x*a-‘A2 - ‘/,a” (1 - b”) A’ - liz A2 (x%-2 - A*) cos 1 = -‘!- c,, 

Here CO is a constant of integration. The integral (3.10) can be written also as 

(a* - cos h) A’ - (b+ - e cos )r) A* .L c,, (3.11) 
(a* = I/* a0 (1 f b”), b* = m + a”e, e = x2 am2) 

4. Let us investigate the phase trajectories for the autonomous system (3.8) in the 

XY-plane, for which X x A cos k, I’ :- A sin A, i.e. A and J. are natural polar coor- 
dinates. The phase trajectories are expressed by (3.10) or (3.11) and they are all sym- 
metric relative to the X-axis. Because of (3.7) all the real trajectories lie on the bound- 
ary or within the circle X2 + 1” 7 C. Let us first determine the singularities of the sys- 
tem (3.8). From the conditions 

d/l I du = 0, dJ, / du = (1 
we find the singular points lm 

a) & .: 0, ,.I1 : I 
1 e (a” - 1) .,‘;I 

1 a0 (I f b’) _ 2) (‘(.I) 
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The quantity m is proportional to resonance “detuning” p - i. Let us show various 
cases of the phase trajectories as a function of m . They are associated with the singular 
points (a),(b) and (c) for which the value m is found in the respective intervals 

a) e (1 - a”) < m < e (aObO - 1) 

b) e (i + a”) < m < e (a’b” - 1) (e = x3 / as) 

cl e (a’b’ - i) < m < e (a”bo + I) 

Indeed, the point (c) is two points on the boundary circumference, which are symmet- 
rically disposed relative to OX. The origin of reference is also singular since dd/du. =0 

for A = 0. 

Therefore, the following fundamental cases can be established. 

i”. m < - e (i + a”) 

In this case there exists just one singular point, the origin of reference, which is a cen- 
ter (Fig. 2), where the amplitude changes lnsignlficantly 

2”. --e (1 + a’) < m < e (1 - a’) 

Fig. 2 

Here two singular points exist, the origin and the point (b). In this case three different 

pictures of the phase trajectory behavia can be extracted: 
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2O.l. -e (1 + a’) < m < - eat 

2”.2. m = - ea’ 

2”.3. -ea” < m < e (1 - a’) 

which are shown, respectively, in Figs. 2.2- 2.4 

3”. e(l-a”)<m<e(a”60-l) 

There are three singular points in this case, the point (b) and the reference origin, 

which are centers, and the point (a) which is a saddle point. The phase trajectories for 
this case are shown in Fig. 2.5 

4”. e (a”bo - 1) < m < e (~“6’ i- 1) 

Four singular points exist, the point (b) and the origin which are centers, and the two 
points (c) on the boundary circumference, which are saddle points. The phase trajecto- 
ries for this case are shown in Fig. 2.6 

5O. e (a”bo + 1) < m 

Exactly as in the first case, we have just one singular point, the origin, which is a cen- 
ter. The phase trajectories for this case are shown in Fig. 2.7. 

The transition from case 2’ to case 3’ and from case 3” to case 4’ are manifested 
particularly clearly from the limiting values 

m = e (1 - a”), m = e (4’6 - 1) 

which are shown in Figs. 2.8 and 2.9. 
It results from Fig. 2 that for m < e (1 -k 0’) the picture of the phase trajectories has 

no singularities, and for m > - e (1 + 0’) the point (b) is first isolated from the origin 

and moved to the left (Figs. 2.2 -2.4). The point (b) will be a center, and the origin 

goes from a center to become a saddle point. After m = e (1 - a’) the point (a), which 
moves to the right, is isolated from the origin. The origin again becomes a center, and 

the point (a) will be a saddle point (Fig.& 5). For m = c (~‘6” - 1) the point (a) reaches 
the boundary circumference and coincides with the points (c)(F&.2.9). For m > e 

((1’6 + 1) the points (c) move from right to left along the boundary circumference and 

for m = e (0’6’ + i) again coincide with the point (b) this time. Furthermore, for 

m > e (0’6” + 1) the phase trajectory picture again has no singularities. 

The phase trajectories yield a very clear picture of the system motion. It is seen that 
motions with constant amplitude are possible, points of center type correspond to them ; 
motions with periodic oscillations in the amplitude are possible, closed ljhase trajectories 

correspond to them. Separatrices and singular saddle points correspond to transitional 
(nonperiodic) changes in the amplitude. 

Energy transfer from one pendulum to the other can be observed in cases 2’-4’. the 
amplitude of oscillation of one pendulum diminishes considerably, while the amplitude 
of the oscillations of the other also increases significantly because of the dependence 

(3.7). 

6, Let us find the amplitude A as a function of the dimensionless time ‘F. We obtain 

from (3.8) and (3.11) df+ 
f v (e - 14~ + (co+ 6’1.4 - a*~‘)’ 

=du (P = A’) (5.1) 

I..et us consider the polynomial 

G (p) = (e - p)” pL2 - (co + b+p - a*~‘)~ (5.2) 
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The roots of the polynomial (5.2) coincide with the positive roots of (3.11) (for Aa) 

with cos A = i and cos I = -1. For different values of c,, and m the polynomial (5.2) 

has four different roots or two real and two complex roots, i.e. it can be written 

G (P) = (1 - a+) (F - ccl) (P - Pz) (P - Ps) (P - PO (5.3) 

I - a* < 0, th > th > P3 > PC > 0 (5.4) 
or as 

G (p) = (1 - a*) (P - PI) (cl - k) IN - VP + 4 

a-b’--e 1 
Pl>P2>0* v = - - ‘2 (p1+ Hz) a* - 1 

0% = 
co2 

plf.42 (a’ - 1) - C 

a’b’ -e 
a*- 1 ++P)] (o>O) 

(v and o can still be obtained as complex roots of (3.11) for cos k = ff). 

The polynomial (5.2) will have the form (5.4) for some value of co, if for this value 
there exists iust one phase trajectory which intersects the X-axis at points with the polar 

radii A, = Jfz and A, = fg. The polynomial (5.2) will have the form (5.3) if for 

some value of co there exist two phase trajectories which intersect the X-axis, the first 

at points with the polar radii A, = JfE and A, = fE , and the second at points with 

the polar radii A, = vFl and A, 2 VE. 
The real roots are found directly while constructing the appropriate phase trajectories. 

In some cases, when the real roots are greater than c, real trajectories do not correspond 

to them. 
It is easy to show that G (p) has the form (5.4) in the cases 1. and 2’ for all phase 

trajectories, and in case 4. for phase trajectories which close around the center (b). and 

also that the polynomial G (p) has the form (5.3) in the case 5’ for all phase trajecto- 

ries and in case 4. for phase trajectories which close around the origin. Hence pr > 

>k>e. 
The situation is complicated somewhat for case 3’. Here the phase trajectory @,, 

which is obtained for c,, = 0 has an important part. For m = m” = I/* ea’ (b” - 1) it 

coincides with the boundary circumference, for m < ma it is inside, and for m > ma OUI- 

side the limits of this circumference. 

The polynomial G (p) has rhe form (5.4) for phase trajectories which close around the 
center (b) and for those which are located between the boundary circumference and @, 

(if the latter is within the boundary circumference). 
The polynomial G (p) has the form (5.3) for phase wajectorfes which close around the 

origin and for those which are located between the outer separatrix through the point (a) 
and a,,. If @,,is outside the boundary circumference, it can happen that pr > cr, > c. 

Let us first examine the case when G (p) has the form (5.3). We set 

k2 _ (1L3 - kk) (P2 - IhI 4 

- (CL3 - PI) (142 - P.4) ’ l2 = (p1 - pd (pi - p$ 

Then (utilizing r61. DP. 19-21). we obtain from (5.1) for p in the range ud G P G us 

~= A’=~(~~-~s)t-~l(~a-C4)sn*~~ 

p1- b.3 - (p1 - p?) m2 u ( 

LI = 1/a* - 1 (u - UO) 

1 ) 
(5.6) 

where the modulus of the Jacobi elliptic function k is defined by (5.5), and IL,, is the 
value of the parameter u for p = p,. 

For p in the interval p2 Q p < p1 we have 



1082 B. I. Cheshanov 

(5.7) 

where the modulus k has the same value as in (5.6), and a,, is the value of the parame- 
ter u for p = c(r. 

The period of long-period oscillations in the amplitude A with respect to the time T 
ls defined by the formula lspl 

&sT = (1 + 2q3S) v a*- 1 K (k) 

Here K (k) is the complete elliptic integral of the first kind in Legendre form of mo- 
dulus k. The expression (5.8) explicitly confirms the slow change in the amplitude A 

(the amplitudes B , and phases cp and Cp , respectively). It is seen that the period of vari- 

ation of A for the two cases (5.6) and (5.7) is identical although the motions themselves 
are completely distinct. 

Let us now examine the case when G (p) has the form (5.4). Here we use the notation 

( ISI. pp. 19-21) PI - v 
tgp=o, tgq25 

For P in the range Pa d P < Pr we obtain 

P= 
p1cos p + hCOS q + (pcos p - prcos q) mu 

cos p + cos q + (cos p - cos q) cnU 
(5.10) 

where the modulus k of the Jacobi elliptic function and the quantity I are defined by 

the expressions P--Q k’ = sina 2 , I=- 
(cos p cos qp 

0 
(5.11) 

and u,, is the value of the parameter u for P = Pl. 

In this case the pe-riod of oscillations of the amplitude A is again defined by (5.8). 
with the sole difference that k and I have the values (5.11). 

After having determined A as a function of T by utilizing (3.7) we can also deter- 
mine B as a function of T. 

It must be noted that the obtained resonance solution of the system (1.7) is also valid 
for the nonresonance case p # 1. 
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